
Schwinger-boson mean-field method for an alternating-spin (1/2, 1) two-leg ladder

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys.: Condens. Matter 15 915

(http://iopscience.iop.org/0953-8984/15/6/318)

Download details:

IP Address: 171.66.16.119

The article was downloaded on 19/05/2010 at 06:34

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/15/6
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 15 (2003) 915–923 PII: S0953-8984(03)55200-6

Schwinger-boson mean-field method for an
alternating-spin (1/2, 1) two-leg ladder

X Y Chen1, Q Jiang2 and W Z Shen1

1 Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics, Department of
Physics, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
2 Department of Physics, Suzhou University, Suzhou 215006, China

E-mail: rom@wx88.net (X Y Chen)

Received 24 October 2002
Published 3 February 2003
Online at stacks.iop.org/JPhysCM/15/915

Abstract
We study the low-lying excitations and thermodynamic properties of a
ferrimagnetic Heisenberg two-leg ladder,which is composed of alternating-spin
(1/2, 1) double chains with antiferromagnetic coupling between the chains.
The spin excitation spectra as well as the corresponding energy gaps are
calculated by means of the Schwinger-boson mean-field theory. The two
interactions between the chains and along the chains play an important role
in determining the two branches of the spectrum, not only regarding the size of
the low-lying excitation energy gap but also the bandgap between the optical
spectrum and the acoustic spectrum. In addition, the two energy gaps and the
specific heat have also been calculated at low temperatures.

1. Introduction

A variety of exotic physical phenomena in low-dimensional magnetic systems,such as Haldane
gap systems, have been attracting much interest in recent years. Owing to strong quantum
fluctuations, these quantal many-body systems produce a variety of interesting phenomena.
Haldane conjectured that a one-dimensional spin chain is gapful for integer spin but gapless
for a half-odd-integer spin chain [1]. This has been demonstrated both experimentally and
theoretically. Current interest has spread to wider classes of spin ladders, stimulated by the
experimental realization of a variety of spin systems [2]. These spin ladders consist of coupled
one-dimensional chains, which can be divided into uniform-spin ladders and alternating-spin
ladders. Theoretical studies [3] have suggested that there are two different universal classes
for uniform-spin ladders, i.e. the antiferromagnetic spin-1/2 ladders are gapful or gapless
depending on whether n (the number of legs) is even or odd [1, 4]. These predictions have
been confirmed experimentally on LaCuO2.5 [5] and (VO)2P2O7 [6].

Similar behaviours have also been found in ferrimagnetic Heisenberg ladders. It was
predicted by the spin wave mean-field theory (SWMFT) that an interplay between two
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ferrimagnetic Heisenberg chains would send the double chains into a new disordered phase,
which was proved by the nonlinear sigma model (NLSM) [7]. Also, the results for the
density matrix renormalization group (DMRG) further prove that any positive interchain
coupling drives the system to a gapped ground state [8]. However, up to now corresponding
analytical work has been relatively limited, especially in comparison with work on uncoupled
ferrimagnetic chains. In a ferrimagnetic Heisenberg two-leg ladder, two energy scales control
the excitation spectrum: the intrachain exchange constant J1 and the transverse interchain
exchange coupling J2. Consequently, we plan to discuss the excitation spectrum in such a
two-leg mixed-spin ladder system composed of two ferrimagnetic Heisenberg chains with two
kinds of spin S A = 1/2 and SB = 1. This ‘ferrimagnetic Heisenberg two-leg ladder’ has
isotropic couplings J1 along the chains and J2 between them. The Hamiltonian of this model
is represented by:

H = J1

∑
(S A1

2i SB1
2i+1 + S A2

2i SB2
2i+1) + J2

∑
(S A1

2i S A2
2i + SB1

2i+1 SB2
2i+1), (1)

and its configuration is graphed as follows:

We choose four nearest-neighboursublattices (S A1 = S A, S A2 = S A and SB1 = SB , SB2 = SB )

as a unit cell. The system contains N such unit cells. Here we limit our discussions to the
range of Ji > 0 (i = 1, 2).

SWMFT, in dealing with the low-lying excitation spectrum,was used in a one-dimensional
spin (1, 1/2) ferrimagnetic Heisenberg chain and gave results which were in good agreement
with those from the DMRG [9]. But for the two-leg ladder system, SWMFT is invalid for
predicting a possible opening of a spin gap due to interaction between chains [7]. Here, we
study this two-leg ladder by means of the Schwinger-boson mean-field theory (SBMFT). Of the
analytical methods, the Schwinger-boson approach proposed by Auerbach and Arovas is the
one of the most successful [10, 11]. Contrary to the SWMFT approach, the SBMFT approach
does not rely on a magnetized ground state, which enables it to describe both ordered and
disordered phases on an equal footing. It has been successfully applied in a one-dimensional
ferrimagnetic Heisenberg chain [12] and a two-dimensional mixed-spin model on a square
lattice [13]. Therefore, we may go on to employ it in this ‘in between’ case, between one
dimension and two dimensions of a ‘ferrimagnetic Heisenberg two-leg ladder’. We find that
the Schwinger-boson approach is suitable for describing both the gapful ground state and the
thermodynamic properties at low temperatures. The energy gap of the low-lying spectrum
derived from SBMFT is in good agreement with that from DMRG by Trumper and Gazza [8].

In our SBMFT approach, there are two branches of the gapful excitation spectrum for
any finite coupling parameters J1 and J2 in the ladder system. The proportions of J1 and
J2 determine the shape and gap of the excitation spectra. The two gaps at T = 0 K are
calculated for different J1 and J2. The two gaps and the specific heat at low temperatures are
also calculated for a special gapful case of J1 = J2 = 1. An exponential law is observed for
the specific heat near T = 0 K because of a non-zero gap in the acoustic spectrum at T = 0 K.

This paper is organized as follows. In section 2 we introduce briefly the Schwinger-boson
techniques. The properties of the excitation spectrum of the ground state at T = 0 K and at
low temperatures are discussed in section 3. A brief summary is given at the end.
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2. Schwinger-boson mean field theory

The four spin operators S An
1 and SBn

1 in equation (1) can be represented by eight kinds of
Schwinger bosons (a(1)

l,↑a(1)
l,↓a(2)

l,↑a(2)
l,↓), and (b(1)

l,↑b(1)
l,↓b(2)

l,↑b(2)
l,↓) on their sublattices,

S An
l,+ = a(n)+

l,↑ a(n)
l,↓ S An

l,z = 1
2 (a(n)+

l,↑ a(n)
l,↑ − a(n)+

l,↓ a(n)
l,↓) (2)

SBn
l,+ = b(n)+

l,↑ b(n)
l,↓ SBn

l,z = 1
2 (b(n)+

l,↑ b(n)
l,↑ − b(n)+

l,↓ b(n)
l,↓), (3)

where n = 1 and 2 represent the top chain and the bottom chain, respectively. On each
sublattice there are constraining conditions: a(n)+

l,↑ a(n)

l,↑ + a(n)+
l,↓ a(n)

l,↓ = 2S A (for l = 2i) and

b(n)+
l,↑ b(n)

l,↑ + b(n)+
l,↓ b(n)

l,↓ = 2SB (for l = 2i + 1). By imposing the constraints on each site, we
can correctly map the original spin system to the bosonic system. Introducing four Lagrange
multipliers λAn and λBn for sublattices An and Bn respectively we can obtain the mean field
Hamiltonian after the Fourier transformation:

H M F = 4N J1 S A SB + N J2 S A S A + N J2 SB SB + 8N J1 A2

+ 2N J2C2 + 2N J2 D2 − 4NλA S A − 4NλB SB

+ λA

∑
k

[
a(1)+

k,↑ a(1)
k,↑ + a(1)+

k,↓ a(1)
k,↓ + a(2)+

k,↑ a(2)
k,↑ + a(2)+

k,↓ a(2)
k,↓

]

+ λB

∑
k

[
b(1)+

k,↑ b(1)

k,↑ + b(1)+
k,↓ b(1)

k,↓ + b(2)+
k,↑ b(2)

k,↑ + b(2)+
k,↓ b(2)

k,↓
]

− J1

∑
k

[
zγk Ae−iθA(a(1)

k,↑b(1)
k,↓ − a(1)

k,↓b(1)
k,↑) + zγk AeiθA(a(1)+

k,↑ b(1)+
k,↓ − a(1)+

k,↓ b(1)+
k,↑ )

]

− J1

∑
k

[
zγk Ae−iθB (a(2)

k,↑b(2)
k,↓ − a(2)

k,↓b(2)
k,↑) + zγk AeiθB (a(2)+

k,↑ b(2)+
k,↓ − a(2)+

k,↓ b(2)+
k,↑ )

]

− J2

∑
k

[
Ce−iθC (a(1)

k,↑a(2)

k,↓ − a(1)

k,↓a(2)

k,↑) + CeiθC (a(1)+
k,↑ a(2)+

k,↓ − a(1)+
k,↓ a(2)+

k,↑ )
]

− J2

∑
k

[
De−iθD (b(1)

k,↑b(2)
k,↓ − b(1)

k,↓b(2)
k,↑) + DeiθD (b(1)+

k,↑ b(2)+
k,↓ − b(1)+

k,↓ b(2)+
k,↑ )

]
, (4)

where
∑

k means the sum of k over the first Brillouin zone. The structure factor γk is defined as
γk = 1

z

∑
η=±1 eiηk . z is the number of nearest neighbours and η denotes the nearest-neighbour

site. The four bond operators we used in the above equation are introduced as:

A2i,2i+η = 1
2 (a(1)

2i,↑b(1)

2i+η,↓ − a(1)

2i,↓b(1)

2i+η,↑)

B2i,2i+η = 1
2 (a(2)

2i,↑b(2)
2i+η,↓ − a(2)

2i,↓b(2)
2i+η,↑)

C2i = 1
2 (a(1)

2i,↑a(2)

2i,↓ − a(1)

2i,↓a(2)

2i,↑)

D2i+1 = 1
2 (b(1)

2i+1,↑b(2)

2i+1,↓ − b(1)

2i+1,↓b(2)

2i+1,↑).

(5)

In equation (4), we have considered the symmetry between the top chain and the bottom chain
in the ladder: 〈A2i,2i+1〉 = 〈B2i,2i+1〉 = AeiθA , 〈C2i 〉 = CeiθC and 〈D2i+1〉 = DeiθD . Here A,
C and D are the real amplitudes, and θA, θC and θD the corresponding phase factors. Since
λA1 = λA2 and λB1 = λB2 for the same reason of symmetry, we can rename them λA and λB

respectively.
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By diagonalizing the mean-field Hamiltonian via the Bogliubov transformation, we have

H M F = Econst +
∑

k

[
E−(k)(α

(1)+
k,↑ α

(1)
k,↑ + β

(1)+
k,↓ β

(1)
k,↓ + 1 + β

(2)+
k,↑ β

(2)
k,↑ + α

(2)+
k,↓ α

(2)
k,↓ + 1)

]
+

∑
k

[
E+(k)(α

(1)+
k,↓ α

(1)

k,↓ + β
(1)+
k,↑ β

(1)

k,↑ + 1 + β
(2)+
k,↓ β

(2)

k,↓ + α
(2)+
k,↑ α

(2)

k,↑ + 1)
]

= Econst + 2
∑

k

[
E−(k)(2n−

k + 1) + E+(k)(2n+
k + 1)

]
, (6)

with

Econst = 4N J1 S A SB + N J2 S A S A + N J2 SB SB + 8N J1 A2

+ 2N J2C2 + 2N J2 D2 − 2NλA(2S A + 1) − 2NλB (2SB + 1).

For each k, there are eight branches of spectra, made up of two groups of four each
having the same excitation energy. They can be divided into two classes: one belonging
to the acoustic branch E−(k), the other belonging to the optical branch E+(k). From a
statistical point of view, we have 〈α(1)+

k,↑ α
(1)
k,↑〉 = 〈β(1)+

k,↓ β
(1)
k,↓〉 = 〈β(2)+

k,↑ β
(2)
k,↑〉 = 〈α(2)+

k,↓ α
(2)
k,↓〉 and

〈α(1)+
k,↓ α

(1)
k,↓〉 = 〈β(1)+

k,↑ β
(1)
k,↑〉 = 〈β(2)+

k,↓ β
(2)
k,↓〉 = 〈α(2)+

k,↑ α
(2)
k,↑〉. Therefore, we can rewrite them as n−

k
and n+

k , respectively, which are the Bose-type quasi-particles with energies E−(k) and E+(k).
The corresponding excitation spectra are:

E−(k) =
√

E0 − √
E1

2
, E+(k) =

√
E0 +

√
E1

2
, (7)

E0 = λ2
A + λ2

B − 2(2J1 A cos[k])2 − (J2C)2 − (J2 D)2

E1 = (λ2
A − λ2

B − (J2C)2 + (J2 D)2) − 4(2J1 A cos[k])2((λA − λB)2 − (J2C)2

− (J2 D)2 − 2J 2
2 C D cos[2θA − θC − θD]).

(8)

At the same time, we define the two energy gaps as follows:

�− = 2 min[E−(k)], �+ = 2 min[E+(k)], (9)

where �− and �+ are the energy gaps of the acoustic spectrum E−(k) and the optical spectrum
E+(k) respectively.

By minimizing the free energy obtained from equations (6)–(8) at finite temperatures, we
end up with self-consistent equations for the eight parameters of A, C , D, λA, λB , θA, θC

and θD . Luckily, the three self-consistent equations about θA, θC and θD can be simplified by
θA = θC = θD = 0 or π , which means 〈A2i,2i+1〉, 〈C2i 〉 and 〈D2i+1〉 are real numbers. The
simplified self-consistent equations are:

1 + 2S A = 2

π

∫ π
2

0

[
coth

(
E−(k)

2T

)
∂ E−(k)

∂λA
+ coth

(
E+(k)

2T

)
∂ E+(k)

∂λA

]
dk, (10)

1 + 2SB = 2

π

∫ π
2

0

[
coth

(
E−(k)

2T

)
∂ E−(k)

∂λB
+ coth

(
E+(k)

2T

)
∂ E+(k)

∂λB

]
dk, (11)

−8J1 A = 2

π

∫ π
2

0

[
coth

(
E−(k)

2T

)
∂ E−(k)

∂ A
+ coth

(
E+(k)

2T

)
∂ E+(k)

∂ A

]
dk, (12)

−2J2C = 2

π

∫ π
2

0

[
coth

(
E−(k)

2T

)
∂ E−(k)

∂C
+ coth

(
E+(k)

2T

)
∂ E+(k)

∂C

]
dk, (13)

−2J2 D = 2

π

∫ π
2

0

[
coth

(
E−(k)

2T

)
∂ E−(k)

∂ D
+ coth

(
E+(k)

2T

)
∂ E+(k)

∂ D

]
dk (14)

where T is the reduced temperature (i.e. kB = 1).
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Figure 1. The energy gaps �− and �+ are plotted as functions of the interaction J1 for J2 = 1
in (a) and (b), respectively.

3. Numerical results and discussion

3.1. Properties at zero temperature

In order to investigate the effects of the interactions in the ladder system on the excitation
spectrum, we start our discussion with two extreme cases.

First, we consider a simple limit case of J1/J2 ∼ 0. Thus the spin ladder is decomposed
into an array of two kinds of decoupled rungs, each rung representing a ‘molecule’ whose
singlet ground state is separated from the triplet excited state by a large gap of the order of
J2:�− = �+ = J2. It is shown that the low-lying excitation energy level is well represented
by the SBMFT.

It is obvious that the two kinds of sublattice rung gaps between the ground state and
the low-lying excitation state are the same at this limit of J1 = 0, which means two gapful
degenerate energy levels. When these sublattice rungs interact (i.e. let the coupling constant
J1 be finite), the original two degenerate energy levels will develop into two separate spectra:
the acoustic spectrum E−(k) and the optical spectrum E+(k). Of course, the enhancement
of the interaction between these sublattice rungs J1 will lead to a decrease of the gap of the
acoustic spectrum. This gap will disappear when J1 increases to infinity, which is the other
extreme case of a ferrimagnetic single chain which is discussed in the following. We calculated
the two gaps within the regime of 0 < J1 < 1 at J2 = 1, and plot them as a function of J1

in figures 1(a) and (b). With increasing J1, the acoustic gap decreases monotonically and the
optical gap increases monotonically. When J1 = J2 = 1, we get �− = 0.11, which is smaller
than the value obtained using the DMRG [8]: �− = 0.33.

Interestingly, one of the original degenerate energy levels goes down to develop the
acoustic spectrum, and the other goes up to develop the optical spectrum when J1 increases
from 0 to 1 at J2 = 1. At the same time, a finite bandgap appears between the acoustic
spectrum and the optical spectrum. We choose some special case of J1, and plot the two
excitation spectra in figure 2. From this we know that the interactions of J1 and J2 in the
system play an important role in determining the form of the excitation spectrum. For the
acoustic spectrum, the width of the band increases monotonically with increase in J1. But for
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Figure 2. The excitation spectra of E−(k) and E+(k) are plotted as functions of k at J2 = 1. The
squares, triangles and circles correspond to the cases of J1 = 0.2, 0.3 and 0.9 respectively. The
full and open symbols denote the excitation spectra of E−(k) and E+(k) respectively.

the optical spectrum, the bandwidth is small and is hardly changed by the value of J1, and its
minimum position can be shifted by J1. A bandgap appears between the two spectra at the
verge of the Brillouin zone when the value of J1/J2 is smaller than 0.4. When J1/J2 > 0.4,
the minimum of the optical spectrum shifts to the centre of the Brillouin zone.

Now we consider the other extreme case of a ferrimagnetic single chain at J2/J1 = 0,
which has been proved to have a gapless acoustic spectrum and a gapful optical spectrum [9, 12].
When J2 = 0, we can reduce our above formulae (7), (8) by C = D = 0 to the same form
as that of [12, 13]. It should be taken into account that the Bogliubov quasi-particle n−

k in
equation (6) may undergo a condensation at absolute zero temperature because the excitation
energy E−(k) has its minimal value E−(k = 0) = 0 at k = 0. But no condensation happens
for n+

k because of the finite optical gap. This has been discussed in detail in [12] and [13]. Of
course, our results return to those.

When the two ferrimagnetic single chains interplay with an antiferromagnetic interaction,
a gap opens up not only in the optical spectrum but also in the acoustic spectrum. We compute
the two gaps �− and �+ in the regime of 0 < J2 < 1 for a fixed J1 = 1, as shown in
figures 3(a) and (b) respectively. We can see that both the acoustic gap and optical gap show a
linear relation with the interaction between the two ferrimagnetic chains when the interaction
J2 is larger than 0.4, but a square relation in the weak interaction case. These conclusions
are in good agreement with the results of the DMRG [8], which ensure us that the SMFT is
effective in this mixed spin system.

The ratio of J1 to J2 also affects the excitation spectrum of the system at the same time.
We choose three different cases of J2, and plot the excitation spectrum in figure 4. At J2 = 0,
the system is reduced to the isolated ferrimagnetic chains, the gapless acoustic dispersion
simply follows the k2 dependence, which is denoted by square-type-line. When the two chains
interact with a finite antiferromagnetic coupling interaction (J2 > 0), the acoustic spectrum
not only opens a gap but also displays a k linear relation near the centre of the first Brillouin
zone. This is an important feature to enter into a gapful phase in many quantum spin systems,
as pointed out by Fukui and Kawakami [7]. The two gapful acoustic spectra are marked by
curves with full triangles and full circles for J2 = 0.6 and 1 respectively. Apart from this,
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Figure 3. The energy gaps �− and �+ are plotted as functions of the interaction J2 for J1 = 1
in (a) and (b) respectively.

Figure 4. The excitation spectra of E−(k) and E+(k) are plotted as functions of k at J1 = 1.
The squares, triangles and circles correspond to the cases of J2 = 0, 0.6 and 1. The full and open
symbols denote the excitation spectra of E−(k) and E+(k) respectively.

the increase in the coupling constant J2 enhances the bandwidth of the acoustic spectrum but
reduces the bandwidth of the optical spectrum. This phenomenon is also observed in two-
dimensional ferrimagnetic multichain systems [13], which is a sign that the one-dimensional
two-leg ladder displays a crossover to a two-dimensional case.
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Figure 5. The energy gaps of �− and �+ are plotted as functions of the temperature for the special
case of J1 = J2 = 1.

3.2. Properties at finite temperatures

Now we move to the thermodynamic properties at finite temperatures, and here we only
consider the special case of J1 = J2 = 1. At low temperatures, the self-consistent
equations (10)–(14) have meaningful solutions, but no solutions for high temperatures. This
means that the SBMFT becomes invalid, as pointed out in [12, 13]. Thus we calculate the two
energy gaps and the per site specific heat CV at low temperatures.

We obtain the two gaps at low temperatures and show them as a function of temperature
T in figure 5. As the temperature increases, the two gaps vary in different ways: the acoustic
gap becomes bigger and the optical gap becomes smaller. This is a universal phenomenon in a
mixed-spin system regardless of the dimension of the system. We have also observed it in both
a one-dimensional mixed-spin system [12] and a two-dimensional mixed-spin system [13].

When the temperature is increasing, the bandwidths of the two excitation spectra both
become smaller. The bosonic quasi-particle distribution confirmed the low-temperature trends
to the classic double energy level distribution, which would make the high-temperature specific
heat in a mixed-spin system turn on a Schottky-type peak as CV ∝ ( �

2kB T sec h( �
2kB T ))2 [14, 15],

where � is the energy-level splitting. Although SBMFT predicts the trend to a double energy
level structure at high temperatures, it misses the well-informed peak at mid temperatures,
since it breaks down as we mentioned above.

At low temperatures, the per-site specific heat CV versus temperature T is calculated by
numerical differentiation of the internal energy with respect to T , and is shown in figure 6.
Owing to the acoustic gap in the ground state, it shows an exponential relation with temperature,
which is obviously different from the power law of T 1/2 in a ferrimagnetic single chain [12].

4. Conclusions

In summary, the low-lying excitation spectra in a system of quantum mixed-spin double
ferrimagnetic chains are investigated in detail. We discuss the excitation spectra for various
combinations of the two coupling parameters J1 and J2. In some special cases our results agree
with earlier ones, which provide a good physical picture. For intermediate coupling strengths



Schwinger-boson mean-field method for an alternating-spin (1/2, 1) two-leg ladder 923

Figure 6. The per-site specific heat CV plotted as a function of the temperature for the interaction
couplings J1 = J2 = 1.

we also get reasonable results. We get a gap �− = 0.11, which is good enough to recall
the generalization of Haldane’s suggestions about antiferromagnetic coupling in ferrimagnetic
systems, although it is smaller than the DMRG result of 0.33. As pointed out by Trumper
et al [8], for a ferrimagnetic multichain any odd number of chains always has a ferrimagnetic
ground state which is gapless but ordered and any even number of chains has a spin-gap
behaviour analogous to the uniform spin-1/2 case. This paper gives a rigorous proof of this.
The interaction between chains is mainly attributable to gap opening in the acoustic branch.
The ground-state energy gap and the bandgap have some special effects on the magnetization
curve at T = 0 K, to which we are giving further consideration.
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